C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

AT-XP® High-Strength Acrylic Adhesive

Formulated for high-strength anchorage of threaded rod and rebar into cracked and uncracked concrete and masonry under a wide range of conditions, AT-XP adhesive dispenses easily in cold or warm environments and in below-freezing temperatures with no need to warm the cartridge. When mixed properly, this low-odor formula is a dark teal color for easy post-installation identification.

Features

- Passed the demanding ICC-ES AC308 adverse-condition tests pertaining to reduced and elevated temperatures and long-term sustained loads
- Tested per ACI 355.4 and AC308
- Code listed under the IBC/IRC for cracked and uncracked concrete per IAPMO UES ER-263 and City of L.A. RR25960
- Code listed under the IBC/IRC for masonry per IAPMO UES ER-281 and City of L.A. RR25966
- AT-XP is code listed for installation with the Speed Clean™ DXS system without any further cleaning (AT-XP: IAPMO-UES ER-263)
- 10:1 two-component high-strength, acrylic-based anchoring adhesive
- Suitable for use under static and seismic loading conditions in cracked and uncracked concrete as well as masonry
- Easy hole-cleaning procedure no power-brushing required
- Suitable for use in dry or water-saturated concrete
- For best results, store between 14°F (-10°C) and 80°F (27°C)
- Cures in substrate temperatures as low as 14°F (-10°C) in 24 hours or less
- Available in 9.4 oz., 12.5 oz. and 30 oz. cartridges for application versatility
- Volatile Organic Compound (VOC) 30 g/L
- · Manufactured in the USA using global materials

Applications

- Threaded rod anchoring and rebar doweling into concrete and masonry
- Suitable for horizontal, vertical and overhead applications

Codes

IAPMO UES ER-263 (concrete); IAPMO UES ER-281 (masonry); City of L.A. RR25960 (concrete), RR25966 (masonry); FL-16230.1; NSF/ANSI Standard 61 (43.2 in.²/1,000 gal.); AASHTO M-235 and ASTM C881 (Type I and IV, Grade 3, Class C — except AT-XP is a non-epoxy formulated for fast cure time)

Chemical Resistance

See pp. 252-253

Installation and Application Instructions

(See also pp. 100-105)

- Surfaces to receive adhesive must be clean.
- Base material temperature must be 14°F or above at the time of installation. For best results, material should be 14°F (-10°C) to 80°F (27°C) at time of application.
- To warm cold material, store cartridges in a warm, uniformly heated area or storage container. Do not immerse cartridges in water or use microwave to facilitate warming.
- Mixed material in nozzle can harden in 3–4 minutes at temperatures of 70°F (21°C) and above.

AT-XP Adhesive

Suggested Specifications

See strongtie.com for more information.

AT-XP® High-Strength Acrylic Adhesive

AT-XP Adhesive Cartridge System

Model No.	Capacity ounces (cubic in.)	Cartridge Type	Carton Qty.	Dispensing Tool	Mixing Nozzle
AT-XP10⁵	9.4 (16.9)	Coaxial	6	CDT10S	
AT-XP13 ⁴	12.5 (22.5)	Side-by-side	10	ADT813S	AMN19Q
AT-XP30⁴	30 (54)	Side-by-side	5	ADT30S ADTA30P or ADTA30CKT	

- 1. Cartridge estimation guidelines are available at strongtie.com/apps.
- Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at strongtie.com.
- 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair AT-XP adhesive performance.
- 4. One AMN19Q mixing nozzle and one nozzle extension are supplied with each cartridge.
- 5. Two AMN19Q mixing nozzles and two nozzle extensions are supplied with each cartridge.

Cure Schedule

Base Materia	l Temperature	Gel Time	Cure Time
°F	°C	(minutes)	(hrs.)
14	-10	30	24
32	0	15	8
50	10	7	3
68	20	4	1
86	30	1½	30 min.
100	38	1	20 min.

For water-saturated concrete, the cure times must be doubled.

Test Criteria

Anchors installed with AT-XP adhesive have been tested in accordance with ICC-ES Acceptance Criteria for Post-Installed Adhesive Anchors in Masonry Elements (AC58) and Adhesive Anchors in Concrete Elements (AC308).

Property	Test Method	Result*
Consistency	ASTM C881	Passed, non-sag
Heat deflection	ASTM D648	253°F (123°C)
Bond strength (moist cure, 60°F)	ASTM C882	3,227 psi (2 days) 3,560 psi (14 days)
Water absorption	ASTM D570	0.10% (24 hours)
Compressive yield strength (cured 60°F)	ASTM D695	18,860 psi
Compressive modulus (cured 60°F)	ASTM D695	718,250 psi
Gel time	ASTM C881	5 minutes
Shrinkage coefficient	ASTM D2566	0.002 in./in.

^{*}Material and curing conditions: 73 \pm 2°F, unless otherwise noted.

Design Information -Concrete

AT-XP Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete¹

IBC		

Ohawastawiatia		Cumahal	Units	Nominal Anchor Diameter d _a (in.) / Rebar Size							
Characteristic		Symbol		% / #3	1/2 / #4	% / #5	3/4 / #6	½ / #7	1 / #8	11/4 / #10	
			Installatio	n Informatio	n						
Drill Bit Diameter for Threaded Rod		d _{hole}	in.	7/16	9/16	11/16	13/16	1	1 1/8	13/8	
Drill Bit Diameter for Rebar		d _{hole}	in.	1/2	5/8	3/4	7/8	1	1 1/8	13/8	
Maximum Tightening Torque	T _{inst}	ftlb.	10	20	30	45	60	80	125		
Dayseitted Englanderent Double Dayse2	Minimum	h _{ef}	in.	23/8	23/4	31/8	31/2	3¾	4	5	
Permitted Embedment Depth Range ²	Maximum	h _{ef}	in.	71/2	10	12½	15	17½	20	25	
Minimum Concrete Thickness		h _{min}	in.				h _{ef} + 5d _{hole}				
Critical Edge Distance ²		C _{ac}	in.	See foonote 2							
Minimum Edge Distance		C _{min}	in.	1¾ 2:					23/4		
Minimum Anchor Spacing		S _{min}	in.			;	3			6	

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

 $[h/h_{ef}] \le 2.4$

 $\tau_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr} ((h_{ef} \times f_c')^{0.5}/(\pi \times d_e))$

h =the member thickness (inches)

 h_{ef} = the embedment depth (inches)

76

 $^{2.} c_{ac} = h_{ef} (\tau_{k,uncr}/1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})], \text{ where:}$

AT-XP® Design Information — Concrete

AT-XP Tension Strength Design Data for Threaded Rod in Normal-Weight Concrete¹

IBC 1		
-------	--	--

	Characteristic		Symbol	Units	Nominal Anchor Diameter d _a (in.)						
	Gilalacteristic		Syllibol	Uiillo	3/8	1/2	5/8	3/4	7/8	1	11/4
		Stee	Strength	trength in Tension							
	Minimum Tensile Stress Area		Ase	in. ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Tension Resistance of Steel — ASTM F1554	4, Grade 36			4,525	8,235	13,110	19,370	26,795	35,150	56,200
	Tension Resistance of Steel — ASTM A193,			9,750	17,750	28,250	41,750	57,750	75,750	121,125	
Threaded Rod	Tension Resistance of Steel — Type 410 Sta (ASTM A193, Grade B6)	N _{sa}	lb.	8,580	15,620	24,860	36,740	50,820	66,660	106,590	
	Tension Resistance of Steel — Type 304 an (ASTM A193, Grade B8 and B8M)	d 316 Stainless			4,445	8,095	12,880	19,040	26,335	34,540	55,235
	Strength Reduction Factor — Steel Failure		φ	_				0.75^{6}			
	Concrete I	Breakout Streng	th in Tens	ion (2,500	0 psi ≤ f' _c	≤ 8,000 ps	i)				
Effectiveness	Factor — Uncracked Concrete		<i>k</i> _{uncr}	_				24			
Effectiveness	Factor — Cracked Concrete		K _{Cr}	_	17						
Strength Redu	ıction Factor — Breakout Failure		φ	_	0.658						
	Bor	nd Strength in T	ension (2,5	500 psi ≤	f' _c ≤ 8,000) psi)					
	Characteristic Bond Strength			psi	1,390	1,590	1,715	1,770	1,750	1,655	1,250
Uncracked Concrete ^{2,3,4}		Minimum			2%	23/4	31/8	3½	3¾	4	5
Control	Permitted Embedment Depth Range	Maximum	h _{ef}	in.	7½	10	12½	15	17½	20	25
	Characteristic Bond Strength ^{9,10,11}		$ au_{k,cr}$	psi	1,085	1,035	980	950	815	800	700
Cracked Concrete ^{2,3,4}	0 "11511110"	Minimum			3	3	31/8	3½	3¾	4	5
	Permitted Embedment Depth Range	Maximum	h _{ef}	in.	7½	10	12½	15	17½	20	25
	Bond Strength in Tension	— Bond Stren	gth Reduct	tion Facto	ors for Con	tinuous S _l	oecial Insp	ection			
Strength Redu	oction Factor — Dry Concrete		ϕ_{dry}	_			0.657			0.5	55 ⁷
Strength Redu	oction Factor — Water-Saturated Concrete		φ _{sat}	_				0.457			
Additional Factor for Water-Saturated Concrete			K _{sat}	_	0.5	0.54 ⁵ 0.77 ⁵ 0.8			96 ⁵		
	Bond Strength in Tensio	n — Bond Stre	ngth Redu	ction Fac	tors for Pe	eriodic Spe	cial Inspe	ction			
Strength Redu	oction Factor — Dry Concrete		ϕ_{dry}	_		0.55 ⁷ 0.45 ⁷				45 ⁷	
Strength Redu	action Factor — Water-Saturated Concrete		φ _{sat}	_	0.457						
Additional Fac	tor for Water-Saturated Concrete		K _{sat}		0.4	46 ⁵		0.655		0.0	B1 ⁵

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- Temperature Range: Maximum short-term temperature of 180°F. Maximum long-term temperature of 110°F.
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by \textit{K}_{sat} .
- 6. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 7. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 8. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for ½", %", %" and 1" anchors must be multiplied by $\alpha_{N,seis} = 0.85$.
- 10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1½" anchors must be multiplied by $\alpha_{N,\text{Seis}} = 0.75$.
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 7/8" anchors must be multiplied by $\alpha_{N,seis} = 0.59$.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

^{*} See p. 13 for an explanation of the load table icons.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

AT-XP® Design Information — Concrete

AT-XP Tension Strength Design Data for Rebar in Normal-Weight Concrete¹

	Characteristic	_						Rebar Size			
	Characteristic		Symbol	Units	#3	#4	#5	#6	#7	#8	#10
		;	Steel Stren	gth in Ten	sion						
	Minimum Tensile Stress	Area	A _{se}	in. ²	0.11	0.2	0.31	0.44	0.6	0.79	1.27
Rebar	Tension Resistance of S (ASTM A615 Grade 60)	Tension Resistance of Steel — Rebar (ASTM A615 Grade 60)		lb.	9,900	18,000	27,900	39,600	54,000	71,100	114,300
Repai	Tension Resistance of S (ASTM A706 Grade 60)	teel — Rebar	N _{sa}	ID.	8,800	16,000	24,800	35,200	48,000	63,200	101,600
	Strength Reduction Fact	or — Steel Failure	φ	_				0.75^{6}			
	Co	ncrete Breakout St	rength in T	ension (2	,500 psi ≤	f' _c ≤ 8,000	psi)				
Effectiveness Factor — Ur	ncracked Concrete		k _{uncr}	_				24			
Effectiveness Factor — Cr	acked Concrete		k _{cr}					17			
Strength Reduction Factor	— Breakout Failure		φ	_	0.65 ⁸						
		Bond Strength	in Tension	(2,500 ps	$si \leq f'_{c} \leq 8,$	000 psi)					
	Characteristic Bond Strength		$ au_{k,uncr}$	psi	1,010	990	970	955	935	915	875
Uncracked Concrete 2,3,4	Permitted Embedment	Minimum			2%	2¾	31/8	3½	3¾	4	5
		Maximum	h _{ef}	in.	7½	10	12½	15	17½	20	25
	Characteristic Bo	nd Strength	$ au_{k,cr}$	psi	340	770	780	790	795	795	820
Cracked Concrete 2,3,4	Permitted Embedment	Minimum			3	3	31/8	3½	3¾	4	5
	Depth Range	Maximum	h _{ef}	in.	71/2	10	121/2	15	17½	20	25
	Bond Strength in	Tension — Bond S	trength Re	duction F	actors for (Continuous	Special In	spection			
Strength Reduction Factor	— Dry Concrete		ϕ_{dry}	_			0.65 ⁷			0.9	55 ⁷
Strength Reduction Factor	— Water-Saturated Concr	ete	ϕ_{sat}	_				0.457			
Additional Factor for Water	-Saturated Concrete		K _{sat}	_	0.8	54 ⁵		0.775		0.0	965
	Bond Strength i	n Tension — Bond		eduction	Factors for	r Periodic S	pecial Insp	ection			
Strength Reduction Factor	— Dry Concrete		ϕ_{dry}				0.55 ⁷			0.4	45 ⁷
Strength Reduction Factor	— Water-Saturated Concr	ete	ϕ_{sat}	_				0.457			
Additional Factor for Water	-Saturated Concrete		K _{sat}	_	0.4	46 ⁵		0.655		0.0	B1 ⁵

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. Temperature Range: Maximum short-term temperature of 180°F. Maximum long-term temperature of 110°F.
- 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. In water-saturated concrete, multiply $au_{\textit{k,uncr}}$ and $au_{\textit{k,cr}}$ by $extit{K}_{\textit{sat.}}$
- 6. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 7. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 8. The value of φ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ.

^{*} See p. 13 for an explanation of the load table icons.

AT-XP Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete¹

SIMPSON Strong-Tie

Adhesive Anchors

AT-XP® Design Information — Concrete

IBC

^	→	
b	530 530	

	Characteristic	Symbol	Unito	Nominal Anchor Diameter (in.)						
	Characteristic	Syllibol	Units	3/8	1/2	5/8	3/4	7/8	1	11/4
	Si	teel Streng	eel Strength in Shear							
	Minimum Shear Stress Area	Ase	in. ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Shear Resistance of Steel — ASTM F1554, Grade 36			2,260	4,940	7,865	11,625	16,080	21,090	33,720
Threaded Rod	Shear Resistance of Steel — ASTM A193, Grade B7			4,875	10,650	16,950	25,050	34,650	45,450	72,675
	Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)	V _{sa}	lb.	4,290	9,370	14,910	22,040	30,490	40,000	63,955
	Shear Resistance of Steel — Type 304 and 316 Stainless (ASTM A193, Grade B8 and B8M)			2,225	4,855	7,730	11,425	15,800	20,725	33,140
	Reduction for Seismic Shear — ASTM F1554, Grade 36						0.85			
	Reduction for Seismic Shear — ASTM A193, Grade B7	$lpha_{V,seis}^{5}$					0.85			
	Reduction for Seismic Shear — Type 410 Stainless (ASTM A193, Grade B6)		_	0.85	0.75					0.85
	Reduction for Seismic Shear — Type 304 and 316 Stainless (ASTM A193, Grade B8 and B8M)			0.85 0.75					0.85	
	Strength Reduction Factor — Steel Failure	φ	_	0.65 ²						
	Concrete	Breakout	Strength	in Shear						
Diameter of Ar	nchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Load-Bearing	Length of Anchor in Shear	ℓ_e	in.	h _{ef}						
Strength Reduction Factor — Breakout Failure			_	0.70³						
	Concre	te Pryout S	trength	in Shear						
Coefficient for	Pryout Strength	k _{cp}	_	1.0 for h_{ef} < 2.50"; 2.0 for h_{ef} ≥ 2.50"						
Strength Redu	ction Factor — Pryout Failure	φ	_				0.704			
ou engui neuu	otion ractor rryout railure	Ψ					0.70			

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 3. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 4. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-15 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 5. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by α_{V,seis} for the corresponding anchor steel type.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

^{*} See p. 13 for an explanation of the load table icons.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

AT-XP® Design Information — Concrete

	Characteristic	Symbol	Units				Rebar Size				
	GildiaGleiiSuc	Syllibol	UIIILS	#3	#4	#5	#6	#7	#8	#10	
		ngth in S	hear								
	Minimum Shear Stress Area	A _{se}	in. ²	0.11	0.2	0.31	0.44	0.6	0.79	1.27	
	Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)	V	lb.	4,950	10,800	16,740	23,760	32,400	42,660	68,580	
Rebar	Shear Resistance of Steel — Rebar (ASTM A706 Grade 60)	V_{sa}	ID.	4,400	9,600	14,880	21,120	28,800	37,920	60,960	
	Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60)	Q 5		0.56			0.80				
	Reduction for Seismic Shear — Rebar (ASTM A706 Grade 60)	$\alpha_{V,seis}^{5}$			0.56			0.8	30		
	Strength Reduction Factor — Steel Failure	φ			0.65 ²						
	Conc	crete Breako	ut Streng	th in Shear							
Diameter of Ar	nchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing	Length of Anchor in Shear	ℓ_e	in.				h _{ef}				
Strength Redu	ction Factor — Breakout Failure	φ	_				0.70 ³				
Concrete Pryout Strength in Shear											
Coefficient for	Pryout Strength	k _{cp}	_	1.0 for h_{ef} < 2.50"; 2.0 for $h_{ef} \ge 2.50$ "							
Strength Redu	ction Factor — Pryout Failure	φ	_	0.704							

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 3. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 4. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 5. The values of $V_{\rm Sa}$ are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, $V_{\rm Sa}$ must be multiplied by $\alpha_{V_{\rm Seis}}$ for the corresponding anchor steel type.

For additional load tables, visit **strongtie.com/atxp**.

Anchor Designer[™] Software for ACI 318, ETAG and CSA

Simpson Strong-Tie® Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

AT-XP® Design Information — Masonry

AT-XP Allowable Tension and Shear Loads for Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction^{1, 3, 4, 5, 6, 8, 9, 10, 11}

IBC		→		, , , ,	*
	252 252	252 252	注注		

Diameter (in.)	Drill Bit Diameter	Minimum Embedment ²	Allowable Load Based on Bond Strength ⁷ (lb.)						
or Rebar Size No.	(in.)	(in.)	Tension Load	Shear Load					
Threaded Rod Installed in the Face of CMU Wall									
3/8	1/2	3%	1,265	1,135					
1/2	5/8	41/2	1,910	1,660					
5/8	3/4	5%	2,215	1,810					
3/4	7/8	6½	2,260	1,810					
Rebar Installed in the Face of CMU Wall									
#3	1/2	3%	1,180	1,315					
#4	5/8	41/2	1,720	1,565					
#5	3/4	5%	1,835	1,565					

- Allowable load shall be the lesser of the bond values shown in this table and steel values, shown on p. 83.
- 2. Embedment depth shall be measured from the outside face of masonry wall.
- Critical and minimum edge distance and spacing shall comply with the information on p. 82. Figure 2 on p. 82 illustrates critical and minimum edge and end distances.
- 4. Minimum allowable nominal width of CMU wall shall be 8". No more than one anchor shall be permitted per masonry cell.
- Anchors shall be permitted to be installed at any location in the face of the fully grouted masonry wall construction (cell, web, bed joint), except anchors shall not be installed within 1½ inches of the head joint, as show in Figure 2 on p. 82.
- Tabulated allowable load values are for anchors installed in fully grouted masonry walls.
- 7. Tabulated allowable loads are based on a safety factor of 5.0.
- Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 below, as applicable.
- 9. Threaded rod and rebar installed in fully grouted masonry walls are permitted to resist dead, live, seismic and wind loads.
- Threaded rod shall meet or exceed the tensile strength of ASTM F1554, Grade 36 steel, which is 58,000 psi.
- 11. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable tension loads shall be multiplied by 0.80.

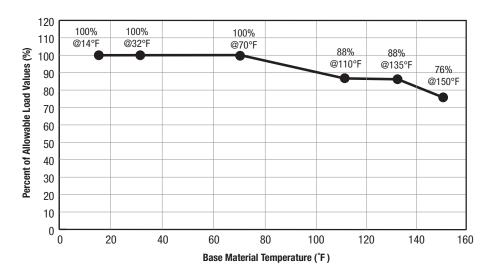


Figure 1. Load Capacity Based on In-Service Temperature for AT-XP® Adhesive in the Face of Fully Grouted CMU Wall Construction

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

^{*} See p. 13 for an explanation of the load table icons.

AT-XP® Design Information — Masonry

AT-XP Edge Distance and Spacing Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction⁷

IBC	0		7

		Edge or Edge Distance ^{1,8}							Spacing ^{2,9}					
	Crit (Full Ancho	ical r Capacity)³	(F		mum hor Capacity)4	Critical (Full Anchor Capacity) ⁵		Minimum (Reduced Anchor Capacity) ⁶					
Rod Dia. Minimum (in.) Embed. or Rebar Depth Size No. (in.)		Critical Edge or End Distance, C _{cr} (in.)	Allowable Load Reduction Factor	Minimum Edge or End Distance, C _{min} (in.)	Allowable Load Reduction Factor		Critical Spacing, S _{cr} (in.)	Allowable Load Reduction Factor	Minimum Spacing, S _{min} (in.)	Allowat Reductio				
	,	Load Direction			Load Direction		Load Direction		Load D	irection	L	oad Direction	ı	
		Tension or Tension or	Tension or Tons	Tension	She	ar ¹⁰	Tension or	Tension or	Tension or	Tension Shea	Shear			
			Shear	Shear	Shear	ICHSIOH	Perp.	Para.	Shear	Shear	Shear	ICHSIOH	Sileai	
3/8	3%	12	1.00	4	1.00	0.76	0.94	8	1.00	4	1.00	1.00		
1/2	41/2	12	1.00	4	0.90	0.57	0.94	8	1.00	4	1.00	1.00		
5/8	5%	12	1.00	4	0.72	0.47	0.94	8	1.00	4	1.00	1.00		
3/4	6½	12	1.00	4	0.72	0.47	0.94	8	1.00	4	1.00	1.00		
#3	3%	12	1.00	4	1.00	0.62	0.95	8	1.00	4	1.00	1.00		
#4	41/2	12	1.00	4	1.00	0.37	0.82	8	1.00	4	1.00	0.89		
#5	5%	12	1.00	4	1.00	0.37	0.82	8	1.00	4	1.00	0.89		

- Edge distance (C_{cr} or C_{min}) is the distance measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figure 2 below for an illustration showing critical and minimum edge and end distances.
- 2. Anchor spacing $(S_{\rm cr} \, {\rm or} \, S_{\rm min})$ is the distance measured from centerline to centerline of two anchors.
- 3. Critical edge distance, C_{cr} , is the least edge distance at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).
- 4. Minimum edge distance, C_{min} , is the least edge distance where an anchor has an allowable load capacity which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, C_{cn} by the load reduction factors shown above.
- 5. Critical spacing, S_{cr} , is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor performance is not influenced by adjacent anchors.
- 6. Minimum spacing, S_{min} , is the least spacing where an anchors has an allowable load capacity , which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance, S_{Cr} , by the load reduction factors shown above.
- Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.
- Load reduction factor for anchors loaded in tension with spacing between critical and minimum shall be obtained by linear interpolation.
- 10. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 3 below). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.

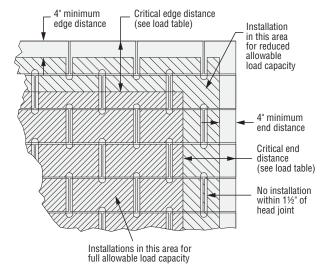


Figure 2. Allowable Anchor Locations for Full and Reduced Load Capacity When Installation Is in the Face of Fully Grouted CMU Masonry Wall Construction

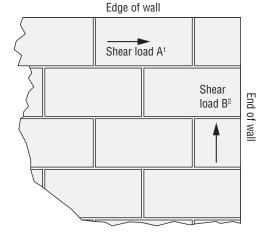


Figure 3. Direction of Shear Load in Relation to Edge and End of Wall

- 1. Direction of Shear Load A is parallel to edge of wall and perpendicular to end of wall.
- 2. Direction of Shear Load B is parallel to end of wall and perpendicular to edge of wall.

^{*} See p. 13 for an explanation of the load table icons.

AT-XP® Design Information — Steel

AT-XP Allowable Tension and Shear Loads — Threaded Rod Based on Steel Strength¹

IBC		→	
-----	--	----------	--

		Tension	gth² (lb.)	Shear Load Based on Steel Strength ³ (lb.)					
Threaded Rod	od Stress Area			Stainle	ss Steel	F1554 A1	ASTM A193 Grade B7 ⁶	Stainless Steel	
Diameter (in.)		ASTM F1554 Grade 36⁴	ASTM A193 Grade B7 ⁶	ASTM A193 Grade B6 ⁵	ASTM A193 Grades B8 and B8M ⁷			ASTM A193 Grade B6 ⁵	ASTM A193 Grades B8 and B8M ⁷
3/8	0.078	1,495	3,220	2,830	1,930	770	1,660	1,460	995
1/2	0.142	2,720	5,860	5,155	3,515	1,400	3,020	2,655	1,810
5/8	0.226	4,325	9,325	8,205	5,595	2,230	4,805	4,225	2,880
3/4	0.334	6,395	13,780	12,125	8,265	3,295	7,100	6,245	4,260

- 1. Allowable load shall be the lesser of bond values given on p. 81 and steel values in the table above.
- 2. Allowable Tension Steel Strength is based on the following equation: $F_v = 0.33 \times F_u \times Tensile Stress Area$.
- 3. Allowable Shear Steel Strength is based on the following equation: $F_v = 0.17 \times F_u \times Tensile Stress Area.$
- 4. Minimum specified tensile strength ($F_u = 58,000 \text{ psi}$) of ASTM F1554, Grade 36 used to calculate allowable steel strength.
- 5. Minimum specified tensile strength ($F_u = 110,000 \text{ psi}$) of ASTM A193, Grade B6 used to calculate allowable steel strength.
- 6. Minimum specified tensile strength ($F_u = 125,000 \text{ psi}$) of ASTM A193, Grade B7 used to calculate allowable steel strength.
- 7. Minimum specified tensile strength ($F_U = 75,000 \text{ psi}$) of ASTM A193, Grades B8 and B8M used to calculate allowable steel strength.

AT-XP Allowable Tension and Shear Loads — Deformed Reinforcing Bar Based on Steel Strength¹

Drill Bit Diameter (in.)		Tension	Load (lb.)	Shear Load (lb.) Based on Steel Strength		
	Minimum Embedment² (in.)	Based on St	eel Strength			
		ASTM A615 Grade 40 ²	ASTM A615 Grade 60 ³	ASTM A615 Grade 40 ^{4,5}	ASTM A615 Grade 60 ^{4,6}	
#3	0.11	2,200	2,640	1,310	1,685	
#4	0.20	4,000	4,800	2,380	3,060	
#5	0.31	6,200	7,400	3,690	4,745	

- 1. Allowable load shall be the lesser of bond values given on p. 81 and steel values in the table above.
- 2. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (20,000 psi x tensile stress area) for Grade 40 rebar.
- 3. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (24,000 psi x tensile stress area) for Grade 60 rebar.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

- 4. Allowable Shear Steel Strength is based on AC58 Section 3.3.3 $(F_{\rm V}=0.17~{\rm x}~F_{\rm u}~{\rm x}$ Tensile Stress Area).
- 5. $F_{\rm u} = 70,000$ psi for Grade 40 rebar.
- 6. $F_{IJ} = 90,000$ psi for Grade 60 rebar

^{*} See p. 13 for an explanation of the load table icons.