AT-XP® High-Strength Acrylic Adhesive

SIMPSON Strong-Tie

AT-XP Adhesive Cartridge System

Model No.	Capacity ounces (cubic in.)	Cartridge Type	Carton Qty.	Dispensing Tool	Mixing Nozzle
AT-XP10⁵	9.4 (16.9)	Coaxial	6	CDT10S	
AT-XP134	12.5 (22.5)	Side-by-side	10	ADT813S	AMN19Q
AT-XP304	30 (54)	Side-by-side	5	ADT30S ADTA30P or ADTA30CKT	

1. Cartridge estimation guidelines are available at strongtie.com/apps.

2. Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at **strongtie.com**.

3. Use only Simpson Strong-Tie[®] mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair AT-XP adhesive performance.

4. One AMN19Q mixing nozzle and one nozzle extension are supplied with each cartridge.

5. Two AMN19Q mixing nozzles and two nozzle extensions are supplied with each cartridge.

Cure Schedule

Base Materia	l Temperature	Gel Time	Cure Time
°F	°C	(minutes)	(hrs.)
14	-10	30	24
32	0	15	8
50	10	7	3
68	20	4	1
86	30	1 1⁄2	30 min.
100	38	1	20 min.

For water-saturated concrete, the cure times must be doubled.

Test Criteria

Anchors installed with AT-XP adhesive have been tested in accordance with ICC-ES Acceptance Criteria for Post-Installed Adhesive Anchors in Masonry Elements (AC58) and Adhesive Anchors in Concrete Elements (AC308).

Property	Test Method	Result*
Consistency	ASTM C881	Passed, non-sag
Heat deflection	ASTM D648	253°F (123°C)
Bond strength (moist cure, 60°F)	ASTM C882	3,227 psi (2 days) 3,560 psi (14 days)
Water absorption	ASTM D570	0.10% (24 hours)
Compressive yield strength (cured 60°F)	ASTM D695	18,860 psi
Compressive modulus (cured 60°F)	ASTM D695	718,250 psi
Gel time	ASTM C881	5 minutes
Shrinkage coefficient	ASTM D2566	0.002 in./in.

*Material and curing conditions: 73 \pm 2°F, unless otherwise noted.

AT-XP® Design Information — Concrete

AT-XP Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete¹

Characteristic		Cumbol	Units		Nom	inal Anchor I	Diameter d _a	(in.) / Rebar	Size	
Unaracteristic		Symbol	Units	3⁄8 / #3	1⁄2 / #4	5% / #5	3⁄4 / #6	½ / # 7	1 / #8	1¼/#10
			Installatio	n Informatio	n					
Drill Bit Diameter for Threaded Rod		d _{hole}	in.	7⁄16	9⁄16	11/16	¹³ ⁄16	1	1 1⁄8	1 3⁄8
Drill Bit Diameter for Rebar		d _{hole}	in.	1⁄2	5⁄8	3⁄4	7⁄8	1	1 1⁄8	1 3⁄8
Maximum Tightening Torque		T _{inst}	ftlb.	10	20	30	45	60	80	125
Permitted Embedment Depth Range ²	Minimum	h _{ef}	in.	23⁄8	2¾	31⁄8	31⁄2	3¾	4	5
rennilleu Empeument Deptit hange	Maximum	h _{ef}	in.	7 1⁄2	10	12½	15	17½	20	25
Minimum Concrete Thickness		h _{min}	in.				$h_{ef} + 5d_{hole}$			
Critical Edge Distance ²		C _{ac}	in.			5	See foonote 2	2		
Minimum Edge Distance		C _{min}	in.			1:	3/4			2¾
Minimum Anchor Spacing		S _{min}	in.			3	}			6

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

2. $C_{ac} = h_{ef}(\tau_{k,uncr}/1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$, where:

 $[h/h_{ef}] \le 2.4$

 $\tau_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr} ((h_{ef} \times f'_c)^{0.5} / (\pi \times d_a))$

h = the member thickness (inches)

 h_{ef} = the embedment depth (inches)

SIMPSON

Strong

IBC

AT-XP[®] Design Information — Concrete

SIMPSON Strong-Tie

	Characteristic		Cumbol	Units		N	ominal An	chor Diam	neter d _a (ir	ı.)	
	Unaracteristic		Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	1¼
		Steel	Strength	in Tensio	n						
	Minimum Tensile Stress Area		Ase	in. ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Tension Resistance of Steel — ASTM F155	4, Grade 36			4,525	8,235	13,110	19,370	26,795	35,150	56,200
	Tension Resistance of Steel — ASTM A193	s, Grade B7			9,750	17,750	28,250	41,750	57,750	75,750	121,125
Threaded Rod	Tension Resistance of Steel — Type 410 St (ASTM A193, Grade B6)	tainless	N _{sa}	lb.	8,580	15,620	24,860	36,740	50,820	66,660	106,590
	Tension Resistance of Steel — Type 304 ar (ASTM A193, Grade B8 and B8M)	nd 316 Stainless			4,445	8,095	12,880	19,040	26,335	34,540	55,235
	Strength Reduction Factor — Steel Failure		ϕ	_				0.756			
	Concrete	Breakout Streng	th in Tensi	ion (2,50	$0 \text{ psi} \leq f'_{\text{C}}$	≤ 8,000 ps	i)				
Effectiveness	Factor — Uncracked Concrete		k _{uncr}	—	24						
Effectiveness	Factor — Cracked Concrete		k _{cr}	_				17			
Strength Redu	iction Factor — Breakout Failure		ϕ					0.658			
	Во	nd Strength in Te	ension (2,5	ioo psi ≤	f' _c ≤ 8,000) psi)					
	Characteristic Bond Strength		$\tau_{k,uncr}$	psi	1,390	1,590	1,715	1,770	1,750	1,655	1,250
Uncracked Concrete ^{2,3,4}	Permitted Embedment Depth Range	Minimum	h _{ef}	in.	23⁄8	2¾	31⁄8	3½	3¾	4	5
	r ennitted Embedment Deptir hange	Maximum	Tiet		7½	10	12½	15	171⁄2	20	25
	Characteristic Bond Strength ^{9,10,11}		$ au_{k,cr}$	psi	1,085	1,035	980	950	815	800	700
Cracked Concrete ^{2,3,4}	Permitted Embedment Depth Range	Minimum	h	in.	3	3	31⁄8	31⁄2	3¾	4	5
	reinnilleu Einbeument Deptit hange	Maximum	h _{ef}		7 1⁄2	10	12½	15	171⁄2	20	25
	Bond Strength in Tension	n — Bond Streng	gth Reduct	ion Facto	ors for Cor	itinuous Sj	oecial Insp	ection			
Strength Redu	iction Factor — Dry Concrete		ϕ_{dry}	_			0.657			0.	55 ⁷
Strength Redu	iction Factor — Water-Saturated Concrete		ϕ_{sat}	_				0.45 ⁷			
Additional Factor for Water-Saturated Concrete K_{sat} — 0.54^5 0.77^5						0.	965				
	Bond Strength in Tensio	on — Bond Stre	ngth Redu	ction Fac	tors for Pe	eriodic Spe	cial Inspe	ction			
Strength Reduction Factor — Dry Concrete			ϕ_{dry}				0.55 ⁷			0.	45 ⁷
Strength Redu	iction Factor — Water-Saturated Concrete		ϕ_{sat}	_				0.45 ⁷			
Additional Eac	tor for Water-Saturated Concrete	K _{sat}		0.46 ⁵ 0.65 ⁵ 0.81 ⁵				015			

 The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

2. Temperature Range: Maximum short-term temperature of 180°F. Maximum long-term temperature of 110°F.

 Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

- 4. Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by K_{sat} .

* See p. 13 for an explanation of the load table icons.

6. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

- 7. The value of φ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ.
- 8. The value of φ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ.
- 9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for ½", %", ¾" and 1" anchors must be multiplied by $\alpha_{N,seis}$ = 0.85.
- 10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 11/4" anchors must be multiplied by $\alpha_{N,seis} = 0.75$.
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 7/8" anchors must be multiplied by $\alpha_{N,seis} = 0.59$.

AT-XP[®] Design Information — Concrete

SIMPSON

Strong-Tie

IBC

	Ohavaataviatia		Currench al-	11				Rebar Size	;		
	Characteristic		Symbol	Units	#3	#4	#5	#6	#7	#8	#10
		:	Steel Stren	gth in Ten	sion						
	Minimum Tensile Stress	Area	A _{se}	in.2	0.11	0.2	0.31	0.44	0.6	0.79	1.27
Rebar	Tension Resistance of S (ASTM A615 Grade 60)	eel — Rebar	Ν	lb.	9,900	18,000	27,900	39,600	54,000	71,100	114,30
nenai	Tension Resistance of S (ASTM A706 Grade 60)	eel — Rebar	N _{sa}	ID.	8,800	16,000	24,800	35,200	48,000	63,200	101,60
	Strength Reduction Fact	or — Steel Failure	φ	_				0.75 ⁶			
	Co	ncrete Breakout S	trength in T	ension (2	,500 psi ≤	f' _c ≤ 8,000	psi)				
Effectiveness Factor — U	ncracked Concrete		k _{uncr}	_				24			
Effectiveness Factor — C	racked Concrete		k _{cr}					17			
Strength Reduction Factor	– Breakout Failure		φ	_				0.65 ⁸			
		Bond Strength	in Tension	(2,500 ps	$\mathbf{si} \leq \mathbf{f'_c} \leq 8,$	000 psi)					
	Characteristic Bond Strength		$\tau_{k,uncr}$	psi	1,010	990	970	955	935	915	875
Uncracked Concrete 2,3,4	Permitted Embedment	Minimum			23⁄8	23⁄4	31⁄8	31⁄2	3¾	4	5
	Depth Range	Maximum	h _{ef}	in.	71⁄2	10	12½	15	17½	20	25
	Characteristic Bo	nd Strength	τ _{k,cr}	psi	340	770	780	790	795	795	820
Cracked Concrete 2,3,4	Permitted Embedment	Minimum			3	3	31⁄8	31⁄2	3¾	4	5
	Depth Range	Maximum	h _{ef}	in.	71⁄2	10	12½	15	17½	20	25
	Bond Strength in	Tension — Bond S	trength Ree	duction Fa	actors for (Continuous	Special In	spection			
Strength Reduction Factor	– Dry Concrete		ϕ_{dry}	_			0.65 ⁷			0.5	55 ⁷
Strength Reduction Factor		ete	ϕ_{sat}	_				0.45 ⁷			
Additional Factor for Wate	r-Saturated Concrete		K _{sat}	_	0.5	545		0.775		0.9	965
	Bond Strength in	n Tension — Bond	Strength R	eduction	Factors for	Periodic S	pecial Insp	pection	-		
Strength Reduction Factor	ϕ_{dry}	_			0.55 ⁷			0.4	45 ⁷		
Strength Reduction Factor		ete	ϕ_{sat}	_				0.45 ⁷			
Additional Factor for Wate	r-Saturated Concrete		K _{sat}	_	0.4	16 ⁵		0.655		0.8	815

design criteria of ACI 318-14 and ACI 318-11.

2. Temperature Range: Maximum short-term temperature of 180°F. Maximum long-term temperature of 110°F.

3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).

4. Long-term concrete temperatures are constant temperatures over a significant time period.

5. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by $K_{sat.}$

6. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

7. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

8. The value of φ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ.

AT-XP[®] Design Information — Concrete

SIMPSON Strong-Tie

T-XP Shea	ar Strength Design Data for Threaded Roo	d in Nori	mal-W	/eight C	oncrete	1		IBC			
	Characteristic	Symbol	Units			Nominal A	Anchor Dia	meter (in.)	ieter (in.)		
		Junio		3⁄⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	1¼	
	Si	teel Streng	th in She	ar							
	Minimum Shear Stress Area	Ase	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
	Shear Resistance of Steel — ASTM F1554, Grade 36		2,260	4,940	7,865	11,625	16,080	21,090	33,720		
	Shear Resistance of Steel — ASTM A193, Grade B7			4,875	10,650	16,950	25,050	34,650	45,450	72,675	
	Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)		lb.	4,290	9,370	14,910	22,040	30,490	40,000	63,955	
Threaded	Shear Resistance of Steel — Type 304 and 316 Stainless (ASTM A193, Grade B8 and B8M)			2,225	4,855	7,730	11,425	15,800	20,725	33,140	
Rod	Rod Reduction for Seismic Shear — ASTM F1554, Grade	$\alpha_{V,seis}^{5}$		0.85							
	Reduction for Seismic Shear — ASTM A193, Grade B7					0.85					
	Reduction for Seismic Shear — Type 410 Stainless (ASTM A193, Grade B6)		-	0.85	0.75		0.85				
	Reduction for Seismic Shear — Type 304 and 316 Stainless (ASTM A193, Grade B8 and B8M)			0.85			0.75			0.85	
	Strength Reduction Factor — Steel Failure	φ	_				0.65 ²				
	Concrete	e Breakout	Strength	in Shear							
Diameter of An	ichor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing I	ength of Anchor in Shear	le	in.				h _{ef}				
Strength Redu	Strength Reduction Factor — Breakout Failure						0.70 ³				
	Concre	te Pryout S	trength i	n Shear							
Coefficient for	Coefficient for Pryout Strength			1.0 for $h_{ef} < 2.50^{"}$; 2.0 for $h_{ef} \ge 2.50^{"}$							
Strength Redu	ction Factor — Pryout Failure	φ	_				0.70 ⁴				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

2. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The value of φ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ.

4. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

5. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by $\alpha_{V,seis}$ for the corresponding anchor steel type.

Design Information — Concrete AT-XP[®]

SIMPSON Strong

IBC

AT-XP Shear Strength Design Data for Rebar in Normal-Weight Concrete¹

AI-VE 2069	r Strength Design Data for Repartin N	iomai-vv	eigni C								
	Characteristic	Symbol	Units				Rebar Size				
		Symbol	UIIIIS	#3	#4	#5	0.8 0.65 ² 0.75 0.875 $h_{\theta f}$ 0.70 ³ 2.50"; 2.0 for $h_{\theta f} \ge 2.50$	#8	#10		
		Steel Stre	ngth in S	hear							
	Minimum Shear Stress Area	A _{se}	in.2	0.11	0.2	0.31	0.44	0.6	0.79	1.27	
	Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)	V	lb.	4,950	10,800	16,740	23,760	32,400	42,660	68,580	
Dobor	Shear Resistance of Steel — Rebar (ASTM A706 Grade 60)	V _{sa}	IJ.	4,400	9,600	14,880	21,120	28,800	37,920	60,960	
Rebar (/ F (/ F (/	Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60)	$\alpha_{V,seis}^{5}$			0.56				0.80		
	Reduction for Seismic Shear — Rebar (ASTM A706 Grade 60)	a _{V,seis}			0.56			0.8	80		
	Strength Reduction Factor — Steel Failure	φ					0.65 ²	760 32,400 42,660 120 28,800 37,920 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 1 ef colspan="3">colspan="3" colspan="3">colspan="3">colspan="3">colspan="3" colspan="3">colspan="3" colspan="3">colspan="3" colspan="3" colspan="3" colspan="3" colspan="3" colspan="3"			
	Con	crete Breako	ut Streng	th in Shear							
Diameter of An	chor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing L	ength of Anchor in Shear	le	in.				h _{ef}				
Strength Reduc	ction Factor — Breakout Failure	φ	_		0.70 ³						
	Co	ncrete Pryou	yout Strength in Shear								
Coefficient for	Pryout Strength	k_{cp} — 1.0 for $h_{\theta f} < 2.50^{"}$; 2.0 for $h_{\theta f} \ge 2.50^{"}$)"				
Strength Reduc	ction Factor — Pryout Failure	φ	_				0.70 ⁴				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

2. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

4. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

5. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by $\alpha_{V,seis}$ for the corresponding anchor steel type.

For additional load tables, visit strongtie.com/atxp.

Anchor Designer[™] Software for ACI 318, ETAG and CSA

Simpson Strong-Tie[®] Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

AT-XP[®] Design Information — Masonry

AT-XP Allowable Tension and Shear Loads for Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction^{1, 3, 4, 5, 6, 8, 9, 10, 11}

Diameter (in.)	Drill Bit Diameter	Minimum Embedment ²	Allowable Load Base	ed on Bond Strength ⁷ (lb.)						
or Rebar Size No.	(in.)	(in.)	Tension Load	Shear Load						
	Threaded Rod Installed in the Face of CMU Wall									
3⁄8	1⁄2	3¾	1,265	1,135						
1/2	5⁄8	41⁄2	1,910	1,660						
5⁄8	3⁄4	5%	2,215	1,810						
3⁄4	7/8	6½	2,260	1,810						
		Rebar Installed in the Face of CMU Wall								
#3	1/2	3¾	1,180	1,315						
#4	5⁄8	41/2	1,720	1,565						
#5	3⁄4	5%	1,835	1,565						

1. Allowable load shall be the lesser of the bond values shown in this table and steel values, shown on p. 83.

2. Embedment depth shall be measured from the outside face of masonry wall.

3. Critical and minimum edge distance and spacing shall comply with the information on p. 82. Figure 2 on p. 82 illustrates critical and minimum edge and end distances.

4. Minimum allowable nominal width of CMU wall shall be 8". No more than one anchor shall be permitted per masonry cell.

- Anchors shall be permitted to be installed at any location in the face of the fully grouted masonry wall construction (cell, web, bed joint), except anchors shall not be installed within 1½ inches of the head joint, as show in Figure 2 on p. 82.
- 6. Tabulated allowable load values are for anchors installed in fully grouted masonry walls.
- 7. Tabulated allowable loads are based on a safety factor of 5.0.
- Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 below, as applicable.
 Threaded rod and rebar installed in fully grouted masonry walls are
- Threaded rod and rebar installed in fully grouted masonry walls are permitted to resist dead, live, seismic and wind loads.
 Threaded rod shall most or exceed the tapile strength of ASTM E1554.
- 10. Threaded rod shall meet or exceed the tensile strength of ASTM F1554, Grade 36 steel, which is 58,000 psi.
- 11. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable tension loads shall be multiplied by 0.80.

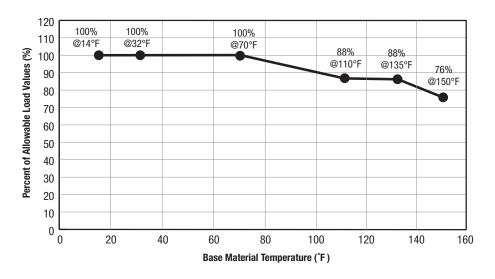
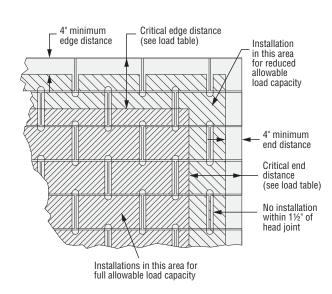


Figure 1. Load Capacity Based on In-Service Temperature for AT-XP[®] Adhesive in the Face of Fully Grouted CMU Wall Construction

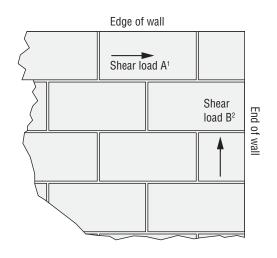
SIMPSO

Sirong


IBC

AT-XP® Design Information — Masonry

AT-XP Edge Distance and Spacing Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction⁷


				Edge or Edge	e Distance ^{1,8}					Spacing ^{2,9}		
		Crit (Full Ancho	ical r Capacity)³	(F	Minimum Reduced Anchor Capacity)⁴				ical r Capacity)⁵	Minimum (Reduced Anchor Capacity) ⁶		
Rod Dia. (in.) or Rebar Size No.	Minimum Embed. Depth (in.)	Critical Edge or End Distance, C _{cr} (in.)	ge or End Load Edge or End Allowable Load Spacing, Loa istance, Reduction Distance, Reduction Factor S (in) Reduc				Allowable Load Reduction Factor	Minimum Spacing, S _{min} (in.)	Allowat Reductio			
		Load Di	irection		Load D	Load Direction			irection	L	oad Direction	ı
		Tension or	Tension or	Tension or	Tension	She	Shear ¹⁰		Tension or	Tension or	Tension	Shear
		Shear	Shear	Shear	Tension	Perp.	Para.	Shear	Shear	Shear	Tension	Silear
3⁄8	3%	12	1.00	4	1.00	0.76	0.94	8	1.00	4	1.00	1.00
1⁄2	4 1⁄2	12	1.00	4	0.90	0.57	0.94	8	1.00	4	1.00	1.00
5⁄8	5%	12	1.00	4	0.72	0.47	0.94	8	1.00	4	1.00	1.00
3⁄4	6½	12	1.00	4	0.72	0.47	0.94	8	1.00	4	1.00	1.00
#3	3%	12	1.00	4	1.00	0.62	0.95	8	1.00	4	1.00	1.00
#4	4 1/2	12	1.00	4	1.00	1.00 0.37 0.82		8	1.00	4	1.00	0.89
#5	5%	12	1.00	4	1.00	0.37	0.82	8	1.00	4	1.00	0.89

- 1. Edge distance (C_{cr} or C_{min}) is the distance measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figure 2 below for an illustration showing critical and minimum edge and end distances.
- Anchor spacing (S_{cr} or S_{min}) is the distance measured from centerline to centerline of two anchors.
- 3. Critical edge distance, C_{cr} , is the least edge distance at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).
- 4. Minimum edge distance, C_{min}, is the least edge distance where an anchor has an allowable load capacity which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, C_{cr}, by the load reduction factors shown above.
- Critical spacing, S_{cr}, is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor performance is not influenced by adjacent anchors.

- 6. Minimum spacing, S_{min} , is the least spacing where an anchors has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance, S_{cr} , by the load reduction factors shown above.
- Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- 8. Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.
- 9. Load reduction factor for anchors loaded in tension with spacing between critical and minimum shall be obtained by linear interpolation.
- 10. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 3 below). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.

Figure 3. Direction of Shear Load in Relation to Edge and End of Wall

- 1. Direction of Shear Load A is parallel to edge of wall and perpendicular to end of wall.
- 2. Direction of Shear Load B is parallel to end of wall and perpendicular to edge of wall.

SIMPSON

Strong

IBC

AT-XP[®] Design Information — Steel

AT-XP Allowable Tension and Shear Loads -Threaded Rod Based on Steel Strength¹

	Tension Load Based on Steel Strength ² (lb.)						ar Load Bas	ed on Steel St	ASTM A193	
Threaded Rod	Tensile			Stainle	ss Steel			Stainless Steel		
Diameter (in.)	Stress Area (in.²)	ASTM F1554 Grade 36⁴	ASTM A193 Grade B7 ⁶	ASTM A193 Grade B6 ⁵	ASTM A193 Grades B8 and B8M ⁷	ASTM F1554 Grade 36⁴	ASTM A193 Grade B7 ⁶	ASTM A193 Grade B6 ⁵	Grades	
3⁄8	0.078	1,495	3,220	2,830	1,930	770	1,660	1,460	995	
1⁄2	0.142	2,720	5,860	5,155	3,515	1,400	3,020	2,655	1,810	
5⁄8	0.226	4,325	9,325	8,205	5,595	2,230	4,805	4,225	2,880	
3⁄4	0.334	6,395	13,780	12,125	8,265	3,295	7,100	6,245	4,260	

1. Allowable load shall be the lesser of bond values given on p. 81 and steel values in the table above.

2. Allowable Tension Steel Strength is based on the following equation: $F_V = 0.33 \times F_U x$ Tensile Stress Area.

3. Allowable Shear Steel Strength is based on the following equation: $F_v = 0.17 \times F_u x$ Tensile Stress Area.

4. Minimum specified tensile strength ($F_u = 58,000$ psi) of ASTM F1554, Grade 36 used to calculate allowable steel strength.

5. Minimum specified tensile strength ($F_u = 110,000$ psi) of ASTM A193, Grade B6 used to calculate allowable steel strength.

6. Minimum specified tensile strength ($F_u = 125,000$ psi) of ASTM A193, Grade B7 used to calculate allowable steel strength.

7. Minimum specified tensile strength ($F_{ij} = 75,000$ psi) of ASTM A193, Grades B8 and B8M used to calculate allowable steel strength.

AT-XP Allowable Tension and Shear Loads — Deformed Reinforcing Bar Based on Steel Strength¹

IBC

		Tension I	Load (lb.)	Shear Load (lb.) Based on Steel Strength					
rill Bit Diameter	Minimum Embedment ²	Based on St	eel Strength						
(in.)	(in.)	ASTM A615 Grade 40 ²	ASTM A615 Grade 60 ³	ASTM A615 Grade 40 ^{4,5}	ASTM A615 Grade 60 ^{4,6}				
#3	0.11	2,200	2,640	1,310	1,685				
#4	0.20	4,000	4,800	2,380	3,060				
#5	0.31	6,200	7,400	3,690	4,745				

1. Allowable load shall be the lesser of bond values given on p. 81 and steel values in the table above.

2. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (20,000 psi x tensile stress area) for Grade 40 rebar.

3. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (24,000 psi x tensile stress area) for Grade 60 rebar.

4. Allowable Shear Steel Strength is based on AC58 Section 3.3.3

 $(F_v = 0.17 \times F_u \times \text{Tensile Stress Area}).$

5. $F_{\rm u}$ = 70,000 psi for Grade 40 rebar.

6. $F_{\rm H} = 90,000$ psi for Grade 60 rebar

Dr