ALLOY Data

EnduraMet[™] 32 Stainless

Identification

UNS Number

• S24100

Type Analysis								
Carbon (Maximum)	0.15 %	Manganese	11.00 to 14.00 %					
Phosphorus (Maximum)	0.060 %	Sulfur (Maximum)	0.030 %					
Silicon (Maximum)	1.00 %	Chromium	16.50 to 19.00 %					
Nickel	0.50 to 2.50 %	Nitrogen	0.20 to 0.45 %					
Iron	Balance							

General Information

Description

EnduraMet[™] 32 stainless is a high-manganese, low-nickel, nitrogen-strengthened austenitic stainless steel. By means of solid solution strengthening, the nitrogen provides significantly higher yield and tensile strength as annealed than conventional austenitic stainless steels such as Type 304 and Type 316, without adversely affecting ductility, corrosion resistance or non-magnetic properties. In the hot rolled unannealed condition, yield strengths of 75 ksi (518 MPa) or higher can be achieved for bar diameters up to 2 in. (50.8 mm).

Applications

EnduraMet 32 stainless may be considered for rebar in bridge decks, barrier and retaining walls, anchoring systems, chemical plant infrastructure, coastal piers and wharves, bridge parapets, sidewalks and bridge pilings. Because of its low magnetic permeability, EnduraMet 32 may also be considered for concrete rebar applications in close proximity to sensitive electronic devices and magnetic resonance medical equipment. The higher strength capability, 75 ksi (518 MPa) minimum yield strength, of EnduraMet 32 is an added economical advantage.

EnduraMet 32 may also be considered for dowel bars, welded-wire mesh and tie wire.

Scaling

The safe scaling temperature for continuous service is 1600°F (871°C).

Corrosion Resistance

EnduraMet 32 stainless has good resistance to atmospheric corrosion and long-term resistance to general corrosion when embedded in concrete. In the 15 week corrosion macrocell test in simulated concrete pore solution, EnduraMet 32 stainless had an average corrosion rate less than 0.25 micro-meter/yr.

Intergranular corrosion may be a problem if the material is heated between 800°F (427°C) and 1650°F (899°C) or cooled slowly through that range.

For optimum corrosion resistance, surfaces must be free of scale, lubricants, foreign particles, and coatings applied for drawing and heading. After fabrication of parts, cleaning and/or passivation should be considered.

Important Note: The following 5-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Restricted
Phosphoric Acid	Restricted	Acetic Acid	Moderate
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Good
Sea Water	Restricted	Humidity	Excellent

Physical Properties	
Specific Gravity	
	7.75
Density	
	0.2800 lb/in ³
Mean Coefficient of Thermal Expansion	
70.00 °F, 1000.0 °F	10.3 x 10 ⁻⁶ in/in/°F
Modulus of Elasticity (E)	
	29.0 x 10 ³ ksi
Electrical Resistivity	
70.0 °F	421.0 ohm-cir-mil/ft
Magnetic Properties	
Magnetic Permeability	
Annealed, 200 Oe	1.0100 Mu
Cold Drawn 70%, 200 Oe	1.0200 Mu

Typical Mechanical Properties

Typical Room Temperature Hot Rolled Mechanical Properties – EnduraMet 32 Stainless

Samples were full-section rebar

Bar Size		Rebar	0.2% Yield Strength		Ultimate Tensile Strength		% Elongation in	
in	mm	"	# ksi		ksi MPa		8" (203 mm)	
0.625 1.000	15.9 25.4	5 8	81 84	559 580	118 121	814 835	40.0 42.0	

Heat Treatment

Annealing

Heat to 1900/1950°F (1038/1066°C) and water quench, or rapidly cool as with other austenitic stainless steels. Typical hardness as annealed is approximately Rockwell B 95.

Hardening

Cannot be hardened by heat treatment; however, high strength can be achieved by thermal mechanical processing Can be hardened by cold work as well.

Workability

Hot Working

EnduraMet 32 stainless can be forged, hot-rolled, hot-headed and upset. Because of its higher strength, greater force than for Type 304 is required. For hot working, heat uniformly to 2100/2200°F (1149/1204°C). Preheating to an intermediate temperature is not required. For rebar, a controlled hot rolling practice is used.

Cold Working

EnduraMet 32 stainless can be cold formed by drawing, bending, upsetting and stamping. Because of its higher strength and work-hardening rate, the force required is greater than for Types 302, 304 or 316. The high work-hardening rate can be used to advantage when cold working to increase strength; i.e., less reduction is required to achieve high levels of strength.

Machinability

EnduraMet 32 stainless has a machinability rating about 41% of AISI 1212. Slow to moderate speeds, moderate feeds and rigid tools should be considered. Chips tend to be tough and stringy. Chip curlers or breakers are helpful. Use a sulfurized cutting fluid, preferable of the chlorinated type.

Following are typical feeds and speeds for EnduraMet 32.

Typical Machining Speeds and Feeds – EnduraMet 32 Stainless

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

Turning—Single-Point and Box Tools

ſ	Depth	Micro-Melt®) Powder High S	Speed Tools	((Inserts)		
l	ofĊut	Tool			Tool	Speed	(fpm)	Feed
	(Inches)	Material	Speed (fpm)	Feed (ipr)	Material	Uncoated	Coated	(ipr)
1	.150	M48, T15	72	.015	C6	250	300	.015
l	.025	M48, T15	84	.007	C7	300	350	.007

Turning—Cut-Off and Form Tools

Tool Mate	rial			Feed (ipr)								
Micro-			Cut-O1	f Tool Widt	h (Inches):		Form Tool Width (Inches)					
Metro Powder HS Tools	Carbide Tools	Speed (fpm)	1/16	1/8	1/4	1/2	1	1 ½	2			
M48, T15		54	.001	.001	.0015	0015	.001	.0007	.0007			
	C6	192	.004	.0055	.004	.004	.003	.002	.002			

Rough Reaming

Micro- Powde Speed	r High	Carbid	e Tools	Feed (ipr) Reamer Diameter (inches)						
Tool Material	Speed (fpm)	Tool Material	Speed (fpm)	1/8	1/4	1/2	1	1 1⁄2	2	
M48, T15	72	C2	80	.003	.005	.008	.012	.015	.018	

Drilling

	High Speed Tools										
Tool	Speed	F	Feed (inches per revolution) Nominal Hole Diameter (inches)								
Material	(fpm)	1/16	1/16 1/8 1/4 1/2 3/4 1 11/2 2								
M42	45-55	.001	.002	.004	.007	.010	.012	.015	.018		
C2 Coated	140	.0005	.0005 .002 .004 .006 .0077 .0088 .0098 .0098								

Die Threading

	FPM for High Speed Tools								
Tool Material 7 or less, tpi 8 to 15, tpi 16 to 24, tpi 25 and up, tpi									
T15, M42	4-8	6-10	8-12	10-15					

Milling, End-Peripheral

l	Ŧ	Micro	o-Melt®	Powder	' High Sp	beed Too	Carbide Tools						
l	лс ОС			Feed (ipt)					Feed (ipt) Cutter Diameter (in)				
	ъ ₩	iai –	82	Cutter Diameter (in)			ed ria						
	(inct	Tool ateri	Speed (fpm)					ate 1	g E				
l	<u>Ö</u> el	Ξ	ଜେଅ					ΞĔ	எப				
H	-			1/4	1/2	3/4	1-2			1/4	1/2	3/4	1-2
	.050	M48, T15	78	.001	.002	.003	.004	C2	245	.001	.002	.003	.005

.....

Tapping		Broaching						
High Speed Tools			Micro-Mett® Powder High Speed Tools					
Tool Material	Speed (fpm)		Tool Material	Speed (fpm)	Chip Load (ipt)			
M7, M10	12-25		M48, T15	12	.0030			

Additional Machinability Notes

When using carbide tools, surface speed feet/minute (sfpm) can be increased between 2 and 3 times over the high speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are starting points. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Weldability

EnduraMet 32 stainless can be satisfactorily welded by the shielded fusion and resistance welding processes. Oxyacetylene welding is not recommended, since carbon pickup in the weld may occur. When a filler metal is required, consider AWS E/ER240 welding consumables which should provide welds with strength approaching that of the base metal. If high weld strength is not necessary, then consider E/ER308. Resistance to intergranular corrosion can be restored by a postweld annealing treatment.

Other Information

Applicable Specifications

Note: While this material meets the following specifications, it may be capable of meeting or being manufactured to meet other general and customer-specific specifications.

- ASTM A276 (Grade XM-28)
 ASTM A313 (Grade XM-28)
 - ASTM A580 (Grade XM-28)
 ASTM A955 (Grade XM-28)

Forms Manufactured

Bar-Rounds
 Rebar or (Bar-Reinforcing)

• Wire

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of <u>Carpenter Technology Corporation</u>. Copyright 2006 CRS Holdings Inc. All rights reserved.

Edition Date: 2/10/06

Visit us on the web at www.cartech.com